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Abstract. We discuss space charge effects on  Landau level broadening and various thermo- 
dynamic properties of a two-dimensional electron system in a magnetic field. In particular, 
the Landau level width is expressed in terms of the magnetic field and the space charge 
density. There exists a large diamagnetic spike in the magnetic moment when the cyclotron 
frequency becomes smaller than the harmonic-oscillator frequency introduced by the space 
charge distribution. 

Recently Harrison [l] has discussed some novel effects of space charge and crossed 
electric fields on energy levels and low-temperature diamagnetism in two-dimensional 
electron gas (ZDEG) systems. A quadratic electrostatic potential may arise from a uniform 
three-dimensional distribution of ionised donor impurities in a semiconductor [l-21. 
The energy spectrum of the system has been shown to be quite different from the case 
without this space charge distribution [l] .  The de Haas-van Alphen oscillations in low- 
temperature diamagnetism disappear when the space charge density is sufficiently large 

Besides Harrison’s work, there exists a large body of studies on the so-called ultra- 
narrow or quasi-one-dimensionaIelectron devices (see e.g. [3-91). A quadratic confining 
potential was also employed [7-91 to study various width or boundary effects in such 
systems. In contrast with these works, here we are concerned with only two-dimensional 
systems. 

In the present paper the thermodynamics of a ~ D E G  in the presence of a space charge 
distribution is studied systematically. We shall first find the density of states, i.e., the 
Landau level broadening, of the system, from which the magnetic moment and the 
specific heat are calculated in a straightforward fashion. 

Consider a ZDEG confined in the xy plane, in the presence of a uniform magnetic field 
Bin the z-direction. Let there be a uniform three-dimensional space charge density p in 
the region -L,/2 6 y s Ly/2. We shall begin with a derivation of the electrostatic 
potential introduced by p.  Suppose that the extension of the system in x direction is 
considerably larger than that in they direction and yet the system is large enough to be 
considered two-dimensional. Thus the electric field due to the space charge distribution 
has only a component in they direction and depends solely ony , because of the symmetry. 
By the same token, the electric field, Ey say, vanishes at y = 0. Consider an infinitesimal 
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cylinder with its central axis along they axis, located at (0, y ,  0). Suppose the length and 
the radius of the cylinder are dy and Y ,  respectively. By using Gauss's law on this cylinder, 
we find 

[E,(), + dy) - E,(y)lnr2 = nr2  dy P I E ,  ( 1 )  

where E is the dielectric constant of the material and SI unit is used in this paper. Solving 
( 1 )  for E, and recalling E, (y = 0) = 0, we obtain EJu)  = ( p / E ) u ,  which corresponds to 
an electrostatic potential? rp(y) = - (p/2c)y2. For an electron with charge -e,  the 
potential energy is 

V(Y> = (ep124y2. (2)  
We wish to comment that in the case where L, - L,, one may use a cylindrically 
symmetric potential, i.e., V = ( e p / 2 ~ )  ( x 2  + y2). 

The Schrodinger equation with the Landau gaugeA = ( - B y ,  0,O) and the potential 
given by (2)  has been solved exactly by Harrison [ 1 ,2] .  The energy levels are 

En,k = (n  + I )hw + ( ~ 5 ~ k ~ / 2 m ) ( y / w ) ~  (3) 

where n = 0, 1 ,2 ,  . . . 
w = (w :  + y2)"* 

w, = eB/m is the cyclotron frequency, and 

y 2  = pe/sm. 

(4) 

In the following discussions we always assume that w 2  = of + y 2  > 0, otherwise the 
system will not be stable. The corresponding wave functions are [l, 21 

Q ) n , k ( & Y )  = (e'k"/(L,)1'2)Un(Y - Y )  (6) 

where U,(r) is the nth simple harmonic oscillator eigenfunction centred at Y = 0. The 
orbit centre here in (6) is (see footnote) 

Y = hkwc /w2m.  (7) 

k = t 2ns/L,  s = 0 , 1 , 2 ,  . . . .  (8) 

By imposing periodic boundary conditions rp,, (x + L,, y )  = q,, (x, y), one obtains 

Following Landau [ lo] ,  we determine the range of k values, as well as that of s in (8) by 
requiring that the orbit centre lies within the ~ D E G  region. In other words, we require 
that - L,/2 s Y 6 L,/2, or 

k,,, = - w2mL,/2hwC .s k s 02mL,/2hw,  = k,,,. (9) 

We note that this restriction can be regarded only as an approximation since a zero 
potential [lo], as well as a quadratic potential in the present case, is inconsistent with 
such a restriction. This approximation may be valid only if the system is fairly large so 
that detailed perimeter effects can be neglected. 

t In [l], the space charge region is chosen to be 0 s y G L,. Because of the symmetry, the electrostatic 
potential should be 2 n p ( y  - Lv/2)2 in cgs units, instead of 2npy2 given by equation (1) of [l]. This difference, 
however, only shifts the centre of electron orbits and does not influence the physical properties of the system, 
e.g. the energy levels. 
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From (8) and (9) we obtain the range of s, i.e. smin S s S s,,,, where 

- 02m(L,L,)/4nho, = - smin. s,,, = - - kmaxLx 
2 n  

Hence the number of distinct states for each quantum number n is [ 11 

D = s,,, - s,,, = 02mA/2nhw, (11) 

where A = LxL, is the 2~ area. As argued above, it is not appropriate to use this result 
in a quasi-one-dimensional (or ultra-narrow) system. 

In the following we shall derive the density of states from the above known results. 
One notices that in the absence of the space charge, the energy levels given by (3) 

reduce to the Landau levels and are independent of k. Also, D reduces to the degeneracy 
of each Landau level. If one still wishes to consider the first term in (3), which is 
(n + I ) h w ,  the Landau levels in the case of a non-zero density of space charge p,  one 
finds that they are all shifted upward (downward) if p > 0 ( p  < 0). The k-dependent 
term in (3) may represent broadenings of Landau levels. These broadenings are therefore 
entirely asymmetric with respect to Landau level centres ( n  + 2)hw, n = 0 , 1 , 2 ,  . . . . 

We rewrite the total density of states D(E) as a sum of the density of states associated 
with each broadened Landau level [ l l ] :  

where E, = (n + 4)ho and the level width r, will be determined below. From (8), the 
number of states available between k and k + d k  is ds = (LX/2n) d k. Also, each energy 
state is two-fold degenerate, since En,k = En, - k .  Hence 

D,(E) d E  = 2 d s  = 2(LX/2z) d k  k > 0. (13) 
We solve (3) for k in terms of E and substitute into (13), yielding 

D,(E) = D/21"/2 1/[E- (n +J)ho]1/2 for 0 s  E -  (n + J ) h u d -  
(14) 

= O  otherwise 

where the level width is independent of the Landau level index: 

rn = (h2kf,,/2m)(y/o)2 = mo2y2L$/80f  = r. (15) 
Therefore the broadening shape function defined in (12) is 

R,(x) = ~ ( x )  = for 0 G x s 1 

= O  otherwise. 

It is transparent that 1;" d E Dn(E)  = D, or 1;" dx R(x) = 1. 
Now we discuss some interesting features revealed by the level width derived. We 

obtain from ( 5 )  that the characteristic energy associated with space charge density 
p = Ns,e is 

hymeV = 18.75 (N,,/2 x lo1' ~ m - ~ ) l / ~ ( 0 . 0 6 6 5  mo/m)"2 ( 1 2 / ~ , ) ' / ~  (17) 
where E ,  is the relative dielectric constant. Harrison [ l ]  used N,, = ND, where ND is the 
donor density in the bulkmaterial. Typically [12], N D  = 2 x l O " ~ m - ~ .  As we shall show, 
this assumption is plausible only in a quasi-one-dimensional sample. 
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In GaAs heterostructures, m = 0.0665 mo, E ,  = 12, h y  is then considerably larger 

The level width given by (15) can be rewritten as 
than the magnetic energy hw,, which is 8.7 meV for B = 5 Tesla. 

where the square bracket contains the magnetic field dependence, and 

To = my2L:/8 = L;N,,e2/8EOE, 

= 3.77 x 1012(N,,/2 x lo" ~ m - ~ > ( 1 2 / ~ , ) ( L , / l  cm)* (mev).  (19) 

Even for the smallest ZDEG samples, i.e., L, = 200 pm, we find that To = 1.5 X lo9 meV 
if N,, = ND = 2 x lo1' cm-3 and E, = 12. Substituting it into (18), we learn that r = 
8.5 X lo9 meV S- hoc = 8.7 meV. Since the Landau levels are broadened so much, we 
expect that the number of occupied Landau levels will be very large. One can estimate 
a lower limit as follows. The Fermi level is E F  = nFhw,, where nF is the index of the 
highest occupied Landau level. The fraction of total number of states under the Fermi 
level in the ith Landau band is [(EF - E,)/T]1/2 d (nFho,/ro)"2. Suppose the density of 
electrons and the magnetic field are such that in the absence of the space charge 
distribution, only the lowest Landau level is occupied (the strong magnetic field limit). 
Therm, [nF(hw~/ro)]l /~ 1. In other words, n~ b IO3, and EF - n ~ h w ,  3 loJ  meV. This 
is obviously not true for an ordinary ZDEG system. Therefore it is possible for the space 
charge density to be close to the donor density only in a quasi-one-dimensional system. 

An explanation for this is that most of the charged ions in the bulk material are 
heavily screened. Those screened charges only affect a small portion of electrons that 
are close to them. Hence they do not contribute to the long range y 2  potential shown in 
(2) .  One expects that the effective space charge density will be much lower than that of 
the donor, i .e. ,  N,, < ND. But the question of how to estimate N,, has, to our knowledge, 
not yet been answered. We hope that the following discussion on space charge effects 
on the thermodynamics of the system will shed some light on this matter. 

For simplicity we assume that the Landau levels do not overlap, i.e. 

We shall also assume positive space charge distribution ( p  > 0). Hence the density of 
states is as shown in figure 1. At  zero temperature, the free energy is equal to the total 
internal energy: 

E F  
U =  [ E D ( E ) d E  

' 0  

where E, is the Fermi energy, and we recall that nF is the index of the highest filled 
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E / f i U  
Figure 1. Density of states in the case where 
r < f i ~ .  

Figure2. Magneticmoment forTu/h, = 0.001 and 
2xhn/my = 20. 

Landau level, i.e., 0 < EF - (nF + 4)hw S r. The Fermi energy can be determined from 
the total number of electrons N :  

JOE' D(E)  d E = N (22) 

or 

EF = (nF + 4)hw + ( N / D  - nF)2r (23) 

n F  = [ N / D l  (24) 

and 

where [XI is the largest integer that does not exceed x. Substituting (23) into (21), we 
obtain the total energy of the system: 

U =  i?ZFDrfiDn$(hU) + Q D ( N / D - ~ F ) ~ ~ $ .  (nF +h)hw(N-n ,D) .  (25) 
It is also of interest to write down the average energy per electron U = U/" in terms of 
the filling factor 

v = N / D  = (2n f in /my) (w , / y ) ( l  + w f / y ' ) - ' .  (26) 

(27) 

U = [ in$v - ' (hw)  + (nF + ;)(I - nFv- ' ) (hw)]  

+ [$nFv- ' r  + $ Y * ( I  - n F ~ - 1 ) 3 r ] .  
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Figure 3. Specific heat for kT /hy  = 0.1, ro/fiy = 
0.001 and 2nfinlmy = 20. 

Now we are ready to evaluate the magnetic susceptibility. Since the internal energy 
U depends on the magnetic field B through v ,  o and r, taking the derivative with respect 
to B is quite lengthy, but straightforward. The result is 

M / N =  - du/dB = -(2pB){SnFv-'(T/hwc)(l -4d)+fn~v- 'a ' i2(2-3d)  
f' 3v 2 ( r / h c 0 ~ ) [ - 2 ( 1 - n ~ v - ~ ) ~  + 2d(i-nFv-1)3 

- 3( 1 - nFv -')2nFv -' (1 - 2d)] 

- (n F f 4)n F v -' a 1'2 ( 1 - 2d) + (12 F + 1 )( 1 - F v - )a ( 1 - d) }  (28) 
where 

a = (1 + y2/wZ) and d = y2 / (o fu ) .  (29) 
It is easy to check that (27) and (29) reduce to their corresponding quantities of an 

At low temperatures, r 9 kT, so the specific heat can be calculated in a standard 
ideal ~ D E G  [13] by letting r = 0. 

fashion [13]: 

c, = 4n2k2TD(EF) 

= (Sx2k2T)  D/2r"2 1/[EF - (nF + 4 ) h 0 ~ ] " ~ .  (30) 

(31) 

Substituting (23) into (30), we obtain the average specific heat per electron: 

C , ( N k )  = (Qn2)(kT/hy)(r/hy)-1v-1(v - nF)-'. 

The magnetic moment and the specific heat plotted in figures (2) and (3) exhibit 
some interesting features. In particular, one sees that there is a large diamagnetic spike 
in the region where w,/y s 1. Also, the specific heat peaks change 'parity' at wc/y  = 1, 
where a &peak exists. This feature can be qualitatively explained from (31) as follows. 
C,/ (Nk)  shows a spike (singularity) each time the filling factor v reaches an integer, i.e., 
v = nF. From (26), we know that v reaches its minimum at o C / y  = 1 and increases 
monotonously as o c / y  increases or decreases from unity. This is the reason that the 
oscillations in C,/(Nk) should be somewhat symmetric with respect to wc/y  = 1. Simi- 
larly one can show that the &peak at w,/y = 1 may be shifted if (2nhn)/(my) is not 
exactly an even integer as chosen in figure 3. 
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As a first approximation, impurity scattering effects [14, 151 are not taken into 
account in the above discussions. When one :onsiders these effects, Landau levels will 
be further broadened. One can argue that since the level broadening introduced by 
space charge is asymmetric with respect to the level centre and the broadening introduced 
by scatterings is symmetric [14,15] the resultant level broadening should be asymmetric 
with respect to the level centre. The asymmetric broadening recently observed in 
experiment [ 161 can therefore be explained schematically by the above argument. It 
implies that the effects predicted in the present paper may possibly be significant and 
observable in these materials used in [16]. One may also expect that, as a result of 
impurity scatterings, the diamagnetic spike and asymmetric pikes in the specific heat 
will be further damped. 

In summary, we have discussed the Landau level broadening and the thermo- 
dynamics of a ~ D E G  in the presence of a uniform magnetic field and a three-dimensional 
space charge distribution. In particular, we have derived an expression of the Landau 
level width in terms of the magnetic field and the space charge density. The Fermi 
energy, the magnetic moment and the specific heat have been calculated explicitly. We 
found a large diamagnetic spike in the magnetic moment when the cyclotron frequency 
becomes smaller than the harmonic oscillator frequency introduced by the space charge. 
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